Model updates for UK lockdown easing points

As I reported in my previous post on 31st July, the model I use, originally authored by Prof. Alex de Visscher at Concordia University on Montreal, and described here, was to be updated to handle several phases of lockdown easing, and I’m glad to say that is now done. Alex has been kind enough already to adopt a method I had been considering, of introducing an array of dates and intervention effectiveness parameters, and I have been able to add the recent UK Government relaxation dates, and the estimated effectiveness of each into a new model code. I have run two sets of easing parameters as a sensitivity test.

The effect of lockdown easing in the UK

As reported in my previous post, there has been a gradual reduction in the rate of decline of cases and deaths in the UK relative to my model forecasts. This decline had already been noted, as I reported before, by The Office for National Statistics and their research partners, the University of Oxford, and reported on the ONS website.
I had adjusted the original lockdown effectiveness in my model (from 23rd March) to reflect this emerging change, but as the model had been predicting correct behaviour up until mid to late May, I will present here the original model forecasts compared to the current reported deaths trend.

Coronavirus – possible trajectories

I guess the UK line in the Johns Hopkins chart, reported earlier, might well flatten at some point soon, as some other countries’ lines have. But if we continue at 3 days for doubling of cases, according to my spreadsheet experiment, we will see over 1m cases after 40 days. See:https://docs.google.com/spreadsheets/d/1kE_pNRlVaFBeY5DxknPgeK5wmXNeBuyslizpvJmoQDY/edit?usp=sharingand the example outputs attachedContinue reading “Coronavirus – possible trajectories”

Coronavirus – forecasting numbers

A few people might have see the Johns Hopkins University Medical School chart on Covid-19 infection rates in different countries. This particular chart (they have produced many different outputs, some of them interactive world incidence models – see https://coronavirus.jhu.edu/map.html for more) usefully compares some various national growth rates with straight lines representing different periods overContinue reading “Coronavirus – forecasting numbers”